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Weather forecast is one of the most important scenarios
of scientific computing. It offers the ability of predicting
future weather changes, especially the occurrence of ex-
treme weather events (¢g., floods, droughts, h
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Abstract—In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For
this purpose, we estabiish a data-driven environment by downloading 43 years of hourly global weather data from the 5th generation of
[ — ECMWF reanalysis (ERAS) data and train a few deep neural networks with about 256 million parameters in total. The spatial resolution
of forecast is 0.25° x 0.25°, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an
™ Al-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted
. . . . N RMSE and ACC) of all factors (e.g., geopotential, specific humidity,
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Z, downstream forecast scenarios, including extreme weather forecast (e.g., ropical cyclone tracking) and large-member ensemble
o . . forecastin real-time. Pangu-Weather not only ends the debate on whether Al-based methods can surpass conventional NWP methods.
As"‘;:!' CE“!“’”:"'-‘ Y N“:}?EII;“'CM" d‘“:" Na‘gﬁ'z" K“"l'_' cn but also reveals novel directions for improving deep learning weather forecast systems.
ice University ‘orporation ‘orporation
Houston, TX 77005 Santa Clara, CA 95051 Santa Clara, CA 95051 = Index Terms—Numerical Weather Prediction, Deep Learning, Medium-range Weather Forecast.
o
—— +*
David Hall Zongyi Li Kamyar Azizzadenesheli A
NVIDIA Corporation California Institute of Technology Purdue University <

learning. The methodology is to use a deep neural network
to capture the relationship between the input (observed
data) and output (target data to be predicted). On spe-
cialized comp device (e.g., GPUs), Al-based meth-

Rice University
Houston, TX 77005

NVIDIA Corporation
Santa Clara, CA 95051

California Institute of Technology
Pasadena, CA 91125
NVIDIA Corporation

Santa Clara, CA 95051

etc.), which has large values to the society (e.g., daily activ-
ity, agriculture, energy production, transportation, industry,
eic.). In the past decade, with the bloom of high-performance
computational device, the community has witnessed a rapid
development in the research field of numerical weather
prediction (NWP) [1]. Conventional NWP methods mostly
follow a simulation-based paradigm which formulates the
physical rules of atmospheric states into partial differen-
tiable equations (PDEs) and solves them using numerical
simulations [2], [3], [4]. Due to the high complexity of
solving PDEs, these NWP methods are often very slow, .g.,
with a spatial resolution of 0.25° x 0.25°, a single simulation
procedure for 10-day forecast can take hours of compu-
tation using hundreds of nodes in a supercomputer [5].
This largely reduces the timeliness in daily weather forecast
and the number of ensemble members that can be used
for probabilistic weather forecast. In addition, conventional
NWP algorithms largely rely on the parametric numerical
models, but these models, albeit being very complex [1],
are often considered inadequate [6], [7], ¢g., errors will be
introduced by parameterization of unresolved processes.
To address the above issues, a promising direction lies
in data-driven weather forecast with Al in particular, deep
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FourCastNet, short for Fourier ForeCasting Neural Nerwork, global data-driven weather fore-
casting model that provides accurate short to medi ange global ictions at 0.25° it
FourCastNet forecasts high ion, fast-timescale variables such as the surface wind
speed, precipitation, and ulmo\pheng water vapor. It has important implications for planning wind
energy resources, predicting extreme weather events such as tropical cyclones, extra-tropical cyclones,
and atmospheric rivers. FourCastNet matches the forecasting accuracy of the ECMWF Integrated
Forecasting System (IFS), a state-of-the-art Numerical Weather Prediction (NWP) model, at short lead
times for large-scale variables, w ing IFS for small-scale variables, including preci
tion. FourCastNet generates a week-long forecast in less than 2 seconds, orders of magnitude faster
than IFS. The speed of FuurC.NNu enables the creation of rapid and inexpensive ].Argc —ensemble
forecasts with bers for imp: We discuss
how data-driven deep ledmmz mndel\ such as FourCastNet are a valuable addition to the meteorology
toolkit to aid and augment NWP models.
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ods run very fast and easily achieve a tradeoff between
model complexity, prediction resolution, and prediction
accuracy [91, [10], [11], [12], [13], [14], [15]. As a recent
example, FourCastNet [14] increased the spatial resolution
to 0.25° x 0.25°, comparable to the ECMWEF Integrated
Forecast Systems (IFS), yet it takes only 7 seconds on four
GPUs for making a 100-member, 24-hour forecast, which
is orders of magnitudes faster than the conventional NWP
methods. However, the forecast accuracy of FourCastNet is
still below satisfaction, e.g., the RMSE of 5-day Z500 forecast
using a single model and a 100-member ensemble are 484.5
and 462.5, respectively, which are much worse than 333.7 re-
ported by operational IFS of ECMWE [16]. In [8], researchers
conjectured that ‘a number of fundamental breakthroughs
are needed’ before Al-based methods can beat NWP.

The breakthrough comes much earlier than they thought.
In this paper, we present Pangu-Weather, a powerful Al-
based weather forecast system that, for the first time,
surpasses existing NWP methods (and, of course, Al-based
methods) in terms of prediction accuracy of all factors.
The test is performed on the 5th generation of ECMWF
reanalysis (ERAS5) data. We download 43 years (1979-2021)
of global weather data, among which we use the 1979-2017
data for training, the 2019 data for validation, and the 2018,

1. Throughout this paper, we will use ‘conventional NWP* or simply
“NWP to refer to the numerical simulation methods, and use *Al-based’
or ‘decp learning based' to specify data-driven forecast systems. We

Qi Taan is the corresponding author.

hat, verbally, Al-based methods also belong to NWP, but
we follow the convention 8] to use these terms.
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GraphcCast: Learning skillful medium-range
global weather forecasting
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We introduce a machine-learning (ML) based weather simulator—called “GraphCast”—which outper-
forms the most accurate i i -ange weather system in the
world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph
neural networks and a novel high-resolution multi-scale mesh representation, which we trained on his-
torical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)’s ERAS
reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and
six atmospheric variables, each at 37 vertical pressure levels, on a 0.25° latitude-longitude grid, which
corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more
accurate than ECMWF’s inistic operational system, HRES, on 90.0% of the 2760 vari-
able and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous
ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate
a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike tradi-
tional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher
quality, and more recent data, lhe skill of the forecasts can improve. Together these results represent
a key step forward in and i ing weather ‘with ML, open new opportuni-
ties for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical
sciences.

Keywords: Weather forecasting, ECMWF, ERAS, HRES, learning simulation, graph neural networks

1. Introduction

Every day, people factor in the upcoming weather when they plan what they do, from deciding which
jacket to wear, to deciding whether to flee a hurricane. When these decisions involve anticipating
the weather over the next ten days, people rely on “medium-range” weather forecasts, which are
provided up to four times a day by weather bureaus, such as the European Centre for Medium-Range
Weather Forecasts (ECMWF), the US’s National Oceanic and Atmospheric Administration, and the UK
Met Office. Here we show that weather forecasting based on machine learning (ML) can rival the
approaches these bureaus have traditionally used.

Medium-range weather forecasts are generated by simulations run on large high-performance
computing (HPC) clusters, and involve two main components. The first component is “data assimila-
tion”, which is the process of inferring and tracking the weather, based on recent and past observations
from satellites, weather stations, ships, etc. The resulting output of data assimilation is an estimate
of the most recent sequence of weather states, termed “analysis”. The second is a forecast model,
traditionally based on “numerical weather prediction” (NWP), which predicts the future temporal
evolution of variables that represent the state of the weather. These two components are closely

author): m, com, m m
l: 2022 DeepMind. All rights reserved

FourCastNet (NVIDIA)

Pangu-Weather (Huawei)

GraphCast (DeepMind/Google)




BACKGROUND

In the past one or two years, breakthroughs have been made in using big data and
artificial intelligence (Al) models to generate medium-range weather forecasts.
Several academic articles indicate that the forecasting skill of Al models could
ma’cdchI or exceed those of traditional global numerical weather prediction (NWP)
models.

Purely data-driven weather forecast models do not necessarily guarantee physical
consistency of forecast results. Can these machine learning-based models give
physically consistent and meteorologically meaningful forecasts?

Al models may output highly optimized predictions or maybe similar to post-
processing products from traditional models. For longer-term forecasts, the
prediction of Al models tends to become smoother, similar to the ensemble
average of ensemble forecasts.

Based on the latest development of Al models, this presentation introduces the
real-time operation of Al models tested by HKO, as well as the evaluation and
verification of Al models in tropical cyclone (TC) forecasting.
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* The outputs based on Al models are visually quite similar to those of traditional models.
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CASE STUDY

September 2023 was an eventful month in
Hong Kong with the ferocious strike by Super
Typhoon Saola on 1 — 2 September and the
phenomenal rainstorm on 7 — 8 September.

Saola necessitated the issuance of the
Hurricane Signal No. 10 again since Super
Typhoon Mangkhut hitting Hong Kong in 2018.

Saola entered the South China Sea later on 30
August while maintaining an estimated
maximum sustained wind of 230 km/h near its
centre, making it the second strongest tropical
cyclone in the South China Sea since the
Observatory’s records began in 1950.
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Super Typhoon —
Severe Typhoon
Typhoon —_—
Severe Tropical Storm e
40°N Tropical Storm —_— ) ) =
Tropical Depression — ) P
Daily Positions 15 16 \J - E
at 00 UTC (08 HKT) S5-G- k
!
30°N = '% ........
J
Hong Kong] 5‘_:" 1/ 3 .
w4
b ,'g ‘é L3 2 1/9
28 e R it P
. /. &93 w30 25 24/8 30
20°N —h ’,.7‘,‘,.\5,..‘.,31., + + PN SN 9
( / l %5 Saold 28/8
) i3 Haikui
&
) ‘“‘\ ‘-
} ) J =
1 /1
10°N 5.." y 2 R
L\ L (
G}’ ﬁN’Exoch%asmv.Tto » 2
5N D
90°E 100°E 110°E 130°E 140°E 150°E
A EERxE

"’ HONG KONG OBSERVATORY




20230825 00Z 20230827 00Z 20230829 00Z 20230831 00Z

(a) ! (b) (c) (d)
:"1;_
Traditional Pt R n—:?“m‘.\_
g g e . P : c"°'”-c§' S, 4 e
NWP models AN f B W | . VAl
‘-

ECMWF
IMA
NCEP
UKMO
HKO oper e

(e) (f) (g) (h)
Pangu-Weather :
& T e L e
J < 5
o)
Pangu-ECMWF ﬁ
Pangu-NCEP e { —
Pangu-DWD
Pangu-MeteoFrance ==l
Pangu-ECCC —f—0—
HKO oper —i——

* Some earlier "Pangu" forecasts suggested that Saola would move across the northeastern part of the South China Sea.

* As of the forecasts initialized at 0OUTC on 29 Aug, the "Pangu" models converged earlier than traditional models, although the forecasts
were slightly southwards.
* However, for the run initialized at 0OOUTC on 31 Aug, the "Pangu" models once again diverged, and the short-term forecast errors were
larger than those of the traditional models.
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Chan, P.W.; He, Y.H.; Lui, Y.S. Super Typhoon Saola (2309) affecting Hong Kong in September 2023—Forecasting Aspect. Preprints 2023, 2023091634. https://doi.org/10.20944/preprints202309.1634.v1



TROPICAL CYCLONE

TRACK FORECAST ERRORS
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The data include the following TCs in 2023: Saola (2309), Haikui (2311),
Kirogi (2312), Yun-yeung (2313), a tropical depression in the central deurnxxs
South China Sea (Sep 2023), Koinu (2314) , Bolaven (2315), Sanba (2316). ©7



CASE STUDY

SUPER TYPHOON SAOLA (2309)

The panel on the right shows the 10-meter
wind speed predicted by the model as Saola
approached Hong Kong, with the hurricane
shown in yellow, based on short-term
forecast initialized at 12UTC on 31 Aug.

Many places in Hong Kong, including
Waglan Island, Cheung Chau, Green Island,
Stanley, Ngong Ping and Tate's Cairn, have
been affected by the hurricane force winds.

The wind forecast output by the "Pangu"
model was significantly weaker and failed
to capture the wind structure of Saola.
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TROPICAL CYCLONE

INTENSITY FORECAST ERRORS
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Summary and Outlook

* In the past one or two years, a new generation of Al models has shown
great promise in weather forecasting, especially TC forecasting.

 Although Al models have an edge over traditional NWPs in TC track
forecast, TC intensity prediction remains a big challenge.

« Current Al models fail to output key variables such as precipitation,
and the spatiotemporal resolution of the output products is still
relatively rough.

« Further research and collaboration in exploring the utilization of Al
models together with traditional NWP models could improve TC

forecasting and early warning capabilities as well as support more
effectively TC operational decisions.
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